US009367380B2

a2 United States Patent

Bennah et al.

US 9,367,380 B2
*Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54) DYNAMICALLY ALTERING ERROR
LOGGING ACTIVITIES IN A COMPUTING

SYSTEM
(71) Applicant: LENOVO ENTERPRISE
SOLUTIONS (SINGAPORE) PTE.
LTD., Singapore (SG)
(72) Inventors: Albert D). Bennah, Cary, NC (US);
Surendra Kodali, Hyderabad (IN);
Robert M. Morgan, Durham, NC (US);
Keyur Patel, Poughkeepsie, NY (US)
(73) Assignee: Lenovo Enterprise Solutions
(Singapore) Pte. Ltd., Singapore (SG)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 130 days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 13/849,708
(22) Filed: Mar. 25,2013
(65) Prior Publication Data
US 2014/0289573 Al Sep. 25, 2014
Related U.S. Application Data
(63) Continuation of application No. 13/848,770, filed on
Mar. 22, 2013.
(51) Imt.ClL
GO6F 11/00 (2006.01)
GO6F 11/07 (2006.01)
(52) US.CL
CPC GO6F 11/0769 (2013.01); GO6F 11/0736

(2013.01)

(58) Field of Classification Search
USPC oot 714/48, 57, 25

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,210,685 B2 5/2007 Cheng
7,225,367 B2* 5/2007 Hashemetal. 714/48
7,559,055 B2 7/2009 Yang et al.
2005/0015668 Al* 12005 Doyleetal. 714/25
(Continued)

FOREIGN PATENT DOCUMENTS

JP 2000250778 A 9/2000
JP 2008140162 A 6/2008
OTHER PUBLICATIONS

Zamfir et al., “Execution Synthesis: A Technique for Automated
Software Debugging”, EuroSys * 10 Proceedings of the Sth European
Conference on Computer Systems, Apr. 2010, pp. 321-334, ACM
New York.

(Continued)

Primary Examiner — Sarai Butler
(74) Attorney, Agent, or Firm —Edward J. Lenart;
Katherine S. Brown; Kennedy Lenart Spraggins LLP

(57) ABSTRACT

Dynamically altering error logging activities in a computing
system, including: receiving, by an error logging manager,
historical error resolution data; identifying, by the error log-
ging manager in dependence upon the historical error reso-
Iution data, a plurality of computing components associated
with each error contained in the historical error resolution
data; and associating, by the error logging manager in a
related component repository, an identification of each of the
plurality of computing components associated with each
error and an identification of the error.

18 Claims, 4 Drawing Sheets

Computing System 200

Fisiorical Error
Resolution Data 201

Error Logging Manager 202

l Receive Historical Eror Resolution Dala 204 I

Identity, In Dependence Upon The Historical Exrar Resolutior: Data, A Pluraliy OF
Computing Corpenisnts Associated With Each Error Contained I The Historical Etror
Resoluton Data 206

Associate, In A Related Component Reposiory. An Identificailon Of Each Of The Pluralfty
Of Computing Compongnis Associated With Each Eror And An Identification Of The.
Error 208

! Computing Companent}
; 212

{1 Relatec Component Repository 210 |
T Y

! Computing Component}
: 21

US 9,367,380 B2
Page 2

(56)

References Cited

U.S. PATENT DOCUMENTS

2008/0134148 Al 6/2008 Clark
2009/0031171 Al 1/2009 Fashchik et al.

2009/0125580 Al* 5/2009 Canningetal.

2010/0088541 Al* 4/2010 Tanaka

2010/0313073 Al* 12/2010 Leebetal. ...

2011/0154117 Al 6/2011 Danielson et al.

2013/0086429 Al* 4/2013 Ng ..ccoovviiiiviinnins

...... 709/203
GOGF 11/0781 Wikipedia, “Logic Analyzer”, en.wikipedia.org (online), May 28,

OTHER PUBLICATIONS

The University of Texas at E1 Paso, “Logic Analyzer”, Microproces-
sors I, (EE3376) course details, Spring 2008, www.ece.utep.edu
(online) [accessed Jun. 12, 2012], 4 pp., URL: http://www.ece.utep.
edu/courses/web3376/Logic Analyzer.html.

714/6.12 2012 [accessed Jun. 12, 2012], 1 pp., URL: http://en.wikipedia.org/

...... 714/37 wiki/Logic__analyzer.

..... 714/38.1 * cited by examiner

U.S. Patent Jun. 14,2016 Sheet 1 of 4 US 9,367,380 B2

e e e e e e e a e a W e Ae a e M e A e A S e e e G e e G e e e R e e e A e A e e e

Computer Display RAM 168
152 180 —

Video Error Logging Manager
Processor Adapter 202
156 209

Front
Side

]
t
]
i
]
]
1
]
]
]
i
]
L]
{
]
]
]
i Bus
]
{
1
i
]
]
]
]
]
]
]
]
]
]
]
t
]
i

Memory Bus 166

162

Expansion Bus 160

i
i
{
i
i
i
i
t
i
i
i
i
i
i
t
i
i
Operating System 154 X
{
i
t
i
i
i
i
1
i
i
i
i
i
i
t
]
{
i

Comm. Drive
Adapter Adapter Adapter
167 178 172
User Input
Devices 181

LAN 1

jol]
{en]

t 4
] t
t !
] i
' :
'

t
' Computer 182 :
!
t 1
] i
] t
] '
] t

FIG. 1

U.S. Patent Jun. 14,2016 Sheet 2 of 4 US 9,367,380 B2

Historical Error
Resolution Data 201

o e e e ey
I

tError Logging Manager 202

Receive Historical Error Resolution Data 204

i
]
i
i
]
1
]
t
]
]
i
i
t
]
]
t
i
]
]
i
t
]
1
]
i
]
Identify, In Dependence Upon The Historical Error Resolution Data, A Plurality Of '
Computing Components Associated With Each Error Contained In The Historical Error '
Resolution Data 206 X

t

i

{

]

i

t

]

1

i

i

]

]

]

1

t

i

]

t

i

{

]

i

t

]

1

Associate, In A Related Component Repository, An Identification Of Each Of The Plurality
Of Computing Components Associated With Each Error And An Identification Of The
Error 208

212 ! 214 ;

(@]
o
3
S
f ot
[=o
>
e
(%]
el
3
S
el
=
@
=
—

U.S. Patent Jun. 14,2016 Sheet 3 of 4 US 9,367,380 B2

Receive Historical Error Resolution Data 204

Identify, A Plurality Of Computing Components Associated With Each Error 206

Associate An ldentification Of Each Of The Plurality Of Computing Components
Associated With An Identification Of The Error 208

Receive A Current Error 302
!
1
1
]
: l
: Identify, From The Related Component Repository, An Error Correction Module <
i Associated With The Current Error 304
]
: l
1
t
]
1
! Execute The Error Correction Module Associated With The Current Emor 306
1
]
S S]
__// Current Error 310 / Error Correction Module
SEAYS JUUUUUSS ...
t 308

L .
212 Lo 214 .

U.S. Patent Jun. 14,2016 Sheet 4 of 4 US 9,367,380 B2

Receive Historical Error Resolution Data 204

Y

Identify, A Plurality Of Computing Components Associated With Each Error 206

i

Associate An Identification Of Each Of The Plurality Of Computing Components
Associated With An Identification Of The Error 208

v

e Receive A Current Error 302

Y

Identify, From The Related Component Repository, The Plurality Of Computing
Components Associated With The Cusrent Error 402

Y

Determine, For Each Computing Component Associated With The Current Error, Whether
To Alter Emor Logging Activities For The Computing Component 404

—» Determine A Current Error Logging Level For The Computing Component 408

v

Determine A Preferred Error Logging Level For The Computing Component Upon An
Qccurrence Of The Current Error 408

Retrieve The Preferred Error Logging Level 410 T

LYes 420

Alter Error Logging Activities For The Computing Component 414

Set The Current Error Logging Level For The Computing Component To The
Preferred Error Logging Level For The Computing Component Upon An Occurrence
Of The Current Error 412

F-—--- 7T h ' = yA e |
—7 Current Error 310 /1 CC 212 i 1CC 214
(1

¥
t
' Related Component Repository 210

US 9,367,380 B2

1
DYNAMICALLY ALTERING ERROR
LOGGING ACTIVITIES IN A COMPUTING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation application of and claims
priority from U.S. patent application Ser. No. 13/848,770,
filed on Mar. 22, 2013.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for dynami-
cally altering error logging activities in a computing system.

2. Description of Related Art

Modern computing systems include a plurality of compo-
nents, software and hardware, that can operate in unexpected
ways at times. Such components may generate errors that can
be serviced by other computing components. Many comput-
ing systems generate error logs and carry out other forms of
event logging to assist a system administrator in the process
of resolving an error. Logging errors and events can consume
large amounts of memory and processing power, such that
maintaining a robust logging policy may not be desirable in
view of the large amounts of system resources that are con-
sumed. Maintaining a less robust logging policy, however,
also has drawbacks as necessary information for analyzing an
error may not be retained.

SUMMARY OF THE INVENTION

Methods, apparatuses, and products for dynamically alter-
ing error logging activities in a computing system, including:
receiving, by an error logging manager, historical error reso-
Iution data; identifying, by the error logging manager in
dependence upon the historical error resolution data, a plu-
rality of computing components associated with each error
contained in the historical error resolution data; and associ-
ating, by the error logging manager in a related component
repository, an identification of each of the plurality of com-
puting components associated with each error and an identi-
fication of the error.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of example embodiments of the inven-
tion as illustrated in the accompanying drawings wherein like
reference numbers generally represent like parts of example
embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block diagram of automated computing
machinery comprising an example computer useful in
dynamically altering error logging activities in a computing
system according to embodiments of the present invention.

FIG. 2 sets forth a flow chart illustrating an example
method for dynamically altering error logging activities in a
computing system according to embodiments of the present
invention.

FIG. 3 sets forth a flow chart illustrating an additional
example method for dynamically altering error logging
activities in a computing system according to embodiments of
the present invention.

10

15

35

40

45

55

2

FIG. 4 sets forth a flow chart illustrating an additional
example method for dynamically altering error logging
activities ina computing system according to embodiments of
the present invention.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Example methods, apparatus, and products for dynami-
cally altering error logging activities in a computing system in
accordance with the present invention are described with
reference to the accompanying drawings, beginning with
FIG. 1. FIG. 1 sets forth a block diagram of automated com-
puting machinery comprising an example computer (152)
useful in dynamically altering error logging activities in a
computing system according to embodiments of the present
invention. The computer (152) of FIG. 1 includes at least one
computer processor (156) or ‘CPU” as well as random access
memory (168) (‘RAM’) which is connected through a high
speed memory bus (166) and bus adapter (158) to processor
(156) and to other components of the computer (152).

Stored in RAM (168) is an error logging manager (202), a
module of computer program instructions for dynamically
altering error logging activities in a computing system
according to embodiments of the present invention. The error
logging manager (202) of FIG. 1 may be embodied as com-
puter program instructions executing on computer hardware.
The error logging manager (202) of FIG. 1 may include
special purpose computer program instructions for associat-
ing various errors that occur in the computing system with
various computing components in the computing system,
determining whether the level of error logging activity that
the computing system performs is sufficient, and dynamically
altering error logging activities in a computing system.

In the example of FIG. 1, the error logging manager (202)
can dynamically alter error logging activities in a computing
system by receiving historical error resolution data. The his-
torical error resolution data includes information describing
one or more errors that occurred in the computing system, the
computing components that were associated with the error, an
identification of corrective action that was taken to fix the
error, and so on. The historical error resolution data may be
embodied, for example, as a structured document such as an
extensible markup language (‘XML’) document that associ-
ates one or more variables with values. The historical error
resolution data may be consumed and processed by the error
logging manager (202) such that the error logging manager
(202) can learn more about the errors that occur in the com-
puting system, including how to take corrective action in
response to the error and how to log the activities of comput-
ing components in the computing system that are associated
with the error.

In the example of FIG. 1, the error logging manager (202)
can further dynamically alter error logging activities in a
computing system by identifying, in dependence upon the
historical error resolution data, a plurality of computing com-
ponents associated with each error contained in the historical
error resolution data. Identifying a plurality of computing
components associated with each error contained in the his-
torical error resolution data may be carried out by inspecting
each error entry in the historical error resolution data. In such
an example, each error entry in the historical error resolution
data can include an identification of each computing compo-
nent that is associated with the error.

In the example of FIG. 1, the error logging manager (202)
can further dynamically alter error logging activities in a
computing system by associating, in a related component

US 9,367,380 B2

3

repository, an identification of each of the plurality of com-
puting components associated with each error and an identi-
fication ofthe error. The related component repository may be
embodied, for example, as a table, database, or other appro-
priate data structure that includes an entry for a plurality of
errors that have been generated at some point by the comput-
ing system. In such an example, each entry in the related
component repository can include, for example, an identifi-
cation of an error, an identification of computing components
associated with the error, an identification of an error correc-
tion module such as a script to execute to repair an error, and
s0 on. Associating an identification of each of the plurality of
computing components associated with each error and an
identification of the error in a related component repository
may therefore be carried out, for example, by searching the
related component repository for an entry for the error and
creating an entry for the error if one does not already exist.

Also stored in RAM (168) is an operating system (154).
Operating systems useful dynamically altering error logging
activities in a computing system according to embodiments of
the present invention include UNIX™, [inux™, Microsoft
XP™ ATX™ [BM’s i5/0S™, and others as will occur to
those of skill in the art. The operating system (154) and the
error logging manager (202) in the example of FIG. 1 are
shown in RAM (168), but many components of such software
typically are stored in non-volatile memory also, such as, for
example, on a disk drive (170).

The computer (152) of FIG. 1 includes disk drive adapter
(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the com-
puter (152). Disk drive adapter (172) connects non-volatile
data storage to the computer (152) in the form of disk drive
(170). Disk drive adapters useful in computers for dynami-
cally altering error logging activities in a computing system
according to embodiments of the present invention include
Integrated Drive Electronics (‘IDE”) adapters, Small Com-
puter System Interface (‘SCSI”) adapters, and others as will
occur to those of skill in the art. Non-volatile computer
memory also may be implemented for as an optical disk drive,
electrically erasable programmable read-only memory (so-
called ‘EEPROM” or ‘Flash’ memory), RAM drives, and so
on, as will occur to those of skill in the art.

The example computer (152) of FIG. 1 includes one or
more input/output (‘1/0”) adapters (178). 1/O adapters imple-
ment user-oriented input/output through, for example, soft-
ware drivers and computer hardware for controlling output to
display devices such as computer display screens, as well as
user input from user input devices (181) such as keyboards
and mice. The example computer (152) of FIG. 1 includes a
video adapter (209), which is an example of an 1/O adapter
specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video
adapter (209) is connected to processor (156) through a high
speed video bus (164), bus adapter (158), and the front side
bus (162), which is also a high speed bus.

The example computer (152) of FIG. 1 includes a commu-
nications adapter (167) for data communications with other
computers (182) and for data communications with a data
communications network (100). Such data communications
may be carried out serially through RS-232 connections,
through external buses such as a Universal Serial Bus
(‘USB’), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communications

25

40

45

55

4

network. Examples of communications adapters useful for
dynamically altering error logging activities in a computing
system according to embodiments of the present invention
include modems for wired dial-up communications, Ethernet
(IEEE 802.3) adapters for wired data communications net-
work communications, and 802.11 adapters for wireless data
communications network communications.

For further explanation, FIG. 2 sets forth a flow chart
illustrating an example method for dynamically altering error
logging activities in a computing system (200) according to
embodiments of the present invention. The example method
of FIG. 2 is carried out by an error logging manager (202). In
the example method of FIG. 2 the error logging manager
(202) may be embodied as a module of computer program
instructions executing on computer hardware. The error log-
ging manager (202) of FIG. 2 may include special purpose
computer program instructions for associating various errors
that occur in the computing system (200) with various com-
puting components in the computing system, determining
whether the level of error logging activity that the computing
system (200) performs is sufficient, and dynamically altering
error logging activities in a computing system (200).

The example method of FIG. 2 includes receiving (204), by
the error logging manager (202), historical error resolution
data (201). In the example method of FIG. 2, the historical
error resolution data (201) includes information describing
one or more errors that occurred in the computing system
(200), the computing components (212, 214) that were asso-
ciated with the error, an identification of corrective action that
was taken to fix the error, and so on. In the example method of
FIG. 2, the historical error resolution data (201) may be
embodied, for example, as a structured document such as an
XML document that associates one or more variables with
values. The historical error resolution data (201) may be
consumed and processed by the error logging manager (202)
such that the error logging manager (202) can learn more
about the errors that occur in the computing system (200),
including how to take corrective action in response to the
error and how to log the activities of computing components
(212, 214) in the computing system (200) that are associated
with the error.

Consider an example in which the computing system (200)
includes a plurality of blade servers, each of which executes
one or more virtual machines. In such an example, an inven-
tory collection process can be configured to periodically cap-
ture an image of each virtual machine executing on each of the
blade servers. If the inventory collection process is not able to
capture an image of each virtual machine executing on each
of'the blade servers, however, an error message with an error
code will be generated. In such an example, the inventory
collection process may not be able to capture an image of a
particular virtual machine executing on a particular blade
servers because a storage device that stores information asso-
ciated with the particular virtual machine has been configured
by the manufacturer with an invalid UUID that identifies the
storage device. As such, when the inventory collection pro-
cess attempts to access the storage device, the inventory col-
lection process is not able to access the storage device using
the invalid UUID. The storage device is therefore a comput-
ing component in the computing system that is associated
with the error.

In addition to the storage device being designated as a
computing component in the computing system that is asso-
ciated with the error, the failure to periodically capture an
image of each virtual machine executing on each of the blade
servers may have a negative impact on a virtual machine
control component in the computing system (200). For

US 9,367,380 B2

5

example, the virtual machine control component may require
an accurate image of each virtual machine executing on each
of'the blade servers to function properly. The virtual machine
control component may therefore also be a computing com-
ponent in the computing system (200) that is associated with
the error because the occurrence of the error can result in the
virtual machine control component operating improperly.

In the process of responding to such an error, a system
administrator may create documentation describing the error,
the computing components in the computing system (200)
that is associated with the error, information describing how
the computing components in the computing system (200) are
associated with the error (e.g., a component causes the error,
acomponent is negatively impacted by the error), information
describing a tool used to correct the error, and so on. In such
an example, such documentation may be converted into a
machine readable format such as a structured document that
is received (204) by the error logging manager (202) as his-
torical error resolution data (201).

The example method of FIG. 2 also includes identifying
(206), by the error logging manager (202) in dependence
upon the historical error resolution data (201), a plurality of
computing components (212, 214) associated with each error
contained in the historical error resolution data (201). In the
example method of FIG. 2, identifying (206) a plurality of
computing components (212, 214) associated with each error
contained in the historical error resolution data (201) may be
carried out by inspecting each error entry in the historical
error resolution data (201). In such an example, each error
entry in the historical error resolution data (201) can include
an identification of each computing component (212, 214)
that is associated with the error.

The example method of FIG. 2 also includes associating
(208), by the error logging manager (202) in a related com-
ponent repository (210), an identification of each of the plu-
rality of computing components (212, 214) associated with
each error and an identification of the error. The related com-
ponent repository (210) of FIG. 2 may be embodied, for
example, as a table, database, or other appropriate data struc-
ture that includes an entry for a plurality of errors that have
been generated at some point by the computing system (200).
In such an example, each entry in the related component
repository (210) can include, for example, an identification of
an error, an identification of computing components (212,
214) associated with the error, an identification of an error
correction module such as a script to execute to repair an
error, and so on. In the example method of FIG. 2, associating
(208) an identification of each of the plurality of computing
components (212, 214) associated with each error and an
identification of the error in a related component repository
(210) may therefore be carried out, for example, by searching
the related component repository (210) for an entry for the
error and creating an entry for the error if one does not already
exist. Consider the example related component repository

(210) below:
TABLE 1
Related Component Repository
Historical
Error Preferred Error System

Error Associated Correction Logging Resolution — Admin
Code Components Module Level Data File Doc
Al123 Inventory Al23exe 3,3 File66.xml docl

Collector,

Main

40

45

55

60

65

6
TABLE 1-continued

Related Component Repository

Historical
Error Preferred Error System
Error Associated Correction Logging Resolution Admin
Code Components Module Level Data File Doc
Memory
B234 Hypervisor, B234.exe 5,1,3 File31.xml doc8
CPU,
Network
Adapter
C345 CPU, Main C345.exe 9,8 File12.xml doc58
Memory
D432 Operating D432.exe 2,9 File159.xml doc42
System,
Memory
Defragmenter

The example related component repository (210) illus-
trated in Table 1 includes entries for four errors. Each entry
includes an error code that identifies the type of error that
occurred. Each entry also includes a list of the computing
components that are associated with the error. Each entry also
includes an identification of an error correction module to be
executed in order to correct the error. Each entry also includes
the preferred logging level for each of the computing compo-
nents that are associated with the error. The preferred logging
level represents the level of granularity with which to log the
activities of each of the computing components that are asso-
ciated with the error and will be discussed in greater detail
with respect to FIG. 4. Each entry also includes a file name for
historical error resolution file that was used to create the entry,
as well as an identification of a document generated by a
system administrator that was used to create the historical
error resolution file.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an additional example method for dynamically
altering error logging activities in a computing system (200)
according to embodiments of the present invention. The
example method of FIG. 3 is similar to the example method of
FIG. 2, as it also includes receiving (204) historical error
resolution data (201), identifying (206) a plurality of comput-
ing components (212, 214) associated with each error con-
tained in the historical error resolution data (201), and asso-
ciating (208) in a related component repository (210) an
identification of each of the plurality of computing compo-
nents (212, 214) associated with each error and an identifica-
tion of the error.

The example method of FIG. 3 also includes receiving
(302), by the error logging manager (202), a current error
(310). In the example method of FIG. 3, the current error
(310) represents the occurrence of some error condition in the
computing system (200) for which corrective action has not
been taken. In the example method of FIG. 3, the current error
(310) may be received (302), for example, from a computing
component (212) that generated the current error (310).

The example method of FIG. 3 also includes identifying
(304), by the error logging manager (202) from the related
component repository (210), an error correction module
(308) associated with the current error (310). In the example
method of FIG. 3, entries in the related component repository
(210) may include an identification of an error, an identifica-
tion of computing components (212, 214) associated with the
error, an identification of an error correction module such as
a script to execute to repair an error, and so on. In such an
example, an error code that identifies the nature of the current
error (310) may be extracted from metadata included in the

US 9,367,380 B2

7

current error (310). The error code may be used to search the
related component repository (210) to identify an entry for an
error of the same type as the current error (310). In such an
example, when the error logging manager (202) finds an entry
in the related component repository (210) for an error of the
same type as the current error (310), the error logging man-
ager (202) may extract the identification of an error correction
module (308) associated with the entry in the related compo-
nentrepository (210) for an error that is of the same type as the
current error (310).

The example method of FIG. 3 also includes executing
(306), by the error logging manager (202), the error correc-
tion module (208) associated with the current error (310). In
the example method of FIG. 3, executing (306) the error
correction module (208) associated with the current error
(310) may be carried out by the error logging manager (202)
initiating a call to the error correction module (208). In such
an example, the error logging manager (202) may pass infor-
mation extracted from the current error (310) to the error
correction module (208) as input parameters. In the example
method of FIG. 3, the error correction module (208) may be
embodied as a module of computer program instructions
executing on computer hardware. The error correction mod-
ule (208) may include computer program instructions for
initiating actions that can resolve the condition that resulted in
the generation of the current error (310).

Consider the example described above in which an inven-
tory collection process could not capture an image of a virtual
machine because a storage device that stores information
associated with the particular virtual machine has been con-
figured by the manufacturer with an invalid UUID that iden-
tifies the storage device. In such an example, the error cor-
rection module (208) may include computer program
instructions for generating a temporary UUID for each stor-
age unit before the inventory collection process is executed
again. In such an example, the error correction module (208)
may generate a temporary UUID for the storage device with
the invalid UUID and restart the inventory collection process.

For further explanation, FIG. 4 sets forth a flow chart
illustrating an additional example method for dynamically
altering error logging activities in a computing system (200)
according to embodiments of the present invention. The
example method of FIG. 4 is similar to the example method of
FIG. 2, as it also includes receiving (204) historical error
resolution data (201), identifying (206) a plurality of comput-
ing components (212, 214) associated with each error con-
tained in the historical error resolution data (201), and asso-
ciating (208) in a related component repository (210) an
identification of each of the plurality of computing compo-
nents (212, 214) associated with each error and an identifica-
tion of the error.

The example method of FIG. 4 also includes receiving
(302), by the error logging manager (202), a current error
(310). In the example method of FIG. 4, the current error
(310) represents the occurrence of some error condition in the
computing system (200) for which corrective action has not
been taken. The current error (310) of FIG. 4 may be received
(302), for example, from a computing component (212) that
generated the current error (310).

The example method of FIG. 4 also includes identifying
(402), by the error logging manager (202) from the related
component repository (210), the plurality of computing com-
ponents (212, 214) that are associated with the current error
(310). In the example method of FIG. 4, each entry in the
related component repository (210) may include an identifi-
cation of the computing components (212, 214) in the com-
puting system (200) that are associated with an error identi-

10

20

25

30

40

45

50

55

60

65

8

fied by an error code. In such an example, identifying (402)
the plurality of computing components (212, 214) that are
associated with the current error (310) may be carried out, for
example, by extracting an error code from the current error
(310) and searching the related component repository (210)
for an entry that matches the error code from the current error
(310). Upon identifying an entry in the related component
repository (210) that matches the error code from the current
error (310), the error logging manager (202) may retrieve the
identification of the computing components (212, 214) in the
computing system (200) that are associated with an error
identified by the error code.

The example method of FIG. 4 also includes determining
(404), by the error logging manager (202) for each computing
component (212, 214) associated with the current error (310),
whether to alter error logging activities for the computing
component (212, 214). In the example method of FIG. 4,
determining (404) whether to alter error logging activities for
the computing component (212, 214) can include determin-
ing (406), by the error logging manager (202), a current error
logging level (418) for the computing component (212, 214).
In the example method of FIG. 4, an error logging level may
be embodied as a numerical value used to determine the level
of granularity with which logging activities occur. For
example, an error logging level of ‘0’ may indicate that noth-
ing is logged for a particular computing component (212,
214) while an error logging level of ‘10’ may indicate every
action performed by a particular computing component (212,
214) is logged with all possible details. In the example
method of FIG. 4, the current error logging level (418) may be
maintained by the associated computing component (212,
214) itself, in the related component repository (210), by the
error logging manager (202), at a predefined location in com-
puter memory, and so on. In such an example, the error
logging manager (202) may determine (406) the current error
logging level (418) for the computing component (212, 214)
by extracting such information from the appropriate source.

In the example method of FIG. 4, determining (404)
whether to alter error logging activities for the computing
component (212, 214) can also include determining (408), by
the error logging manager (302), a preferred error logging
level (416) for the computing component (212, 214) upon an
occurrence of the current error (310). In the example method
of FIG. 4, a preferred error logging level (416) for a particular
computing component (212, 214) may represent the level of
granularity at which the activities of the particular computing
component (212, 214) should be logger. In such an example,
when an error occurs and the particular computing compo-
nent (212, 214) is associated with the error, it may be prefer-
able to log the activities of the particular computing compo-
nent (212, 214) in great detail. Alternatively, during periods at
which the particular computing component (212, 214) is
operating without generating errors, it may be preferable to
log the activities of the particular computing component (212,
214) in less detail. In such an example, determining (408) a
preferred error logging level (416) for the computing compo-
nent (212, 214) upon an occurrence of the current error (310)
may be carried out by extracting an error code from the
current error (310) and searching the related component
repository (210) for an entry that matches the error code. In
such an example, the entry in the related component reposi-
tory (210) that matches the error code may include informa-
tion identifying the preferred error logging level (416) for
each computing component (212, 214) that is associated with
an error of the type that matches upon the occurrence of such
an error.

US 9,367,380 B2

9

In the example method of FIG. 4, the related component
repository (210) can specify the preferred error logging level
(416) for the each computing component (212, 214) associ-
ated with an identification of the error. As described above,
the related component repository (210) may be embodied as
a table, database, or other appropriate data structure that
includes an entry for a plurality of errors that have been
generated at some point by the computing system (200). Each
entry in the related component repository (210) can include
an identification of an error, an identification of computing
components (212, 214) associated with the error, an identifi-
cation of an error correction module such as a scriptto execute
to repair an error, and so on. In the example method of FIG. 4,
each entry in the related component repository (210) can also
include preferred error logging level (416) for the each com-
puting component (212, 214) that is associated with an iden-
tification of the error. In such an example, the preferred error
logging level (416) for the each computing component (212,
214) that is associated with an identification of the error may
be extracted from historical error resolution data (201).

As described above, the historical error resolution data
(201) can include information describing one or more errors
that occurred in the computing system (200), the computing
components (212, 214) that were associated with the error, an
identification of corrective action that was taken to fix the
error, and so on. In such an example, the historical error
resolution data (201) may be generated by a system admin-
istrator creating documentation describing how the error was
resolved. Such documentation may identify the computing
components in the computing system (200) that are associ-
ated with the error, information describing how the comput-
ing components in the computing system (200) are associated
with the error (e.g., a component causes the error, a compo-
nent is negatively impacted by the error), information
describing a tool used to correct the error, and so on. In such
an example, the documentation may also include information
identifying the level to which activities carried out by an
associated computing component should be monitored when
the error occurs. Such documentation may be converted into
amachine readable format such as a structured document that
is received by the error logging manager (202) as historical
error resolution data (201) and ultimately converted into an
entry in the related component repository (210).

In the example method of FIG. 4, determining (408), by the
error logging manager (302), a preferred error logging level
(416) for the computing component (212, 214) upon an
occurrence of the current error (310) can include retrieving
(410) the preferred error logging level (416) from the related
component repository (210). In such an example, retrieving
(410) the preferred error logging level (416) from the related
component repository (210) may be carried out by identifying
an entry in the related component repository (210) that cor-
responds to the current error (310) and retrieving (410) the
preferred error logging level (416) from such an entry.

The example method of FIG. 4 also includes altering (414),
by the error logging manager (202), error logging activities
for the computing component (212, 214). In the example
method of FIG. 4, altering (414) error logging activities for
the computing component (212, 214) is carried out in
response to affirmatively (420) determining to alter error
logging activities for the computing component (212, 214). In
the example method of FIG. 4, altering (414) error logging
activities for the computing component (212, 214) can
include setting (412), by the error logging manager (202), the
current error logging level (418) for the computing compo-

10

15

20

25

30

35

40

45

50

55

60

65

10
nent (212, 214) to the preferred error logging level (416) for
the computing component (212, 214) upon an occurrence of
the current error (310).

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

US 9,367,380 B2

11

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes
of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. A method comprising:

by computer program instruction on a computing device,

receiving an identification of an error;

examining a repository to identify a plurality of computing

components associated with the identification of the
error, wherein the repository comprises an entry includ-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing the identification of the error, an identification of
computer components associated with the error, and a
preferred error logging level for the computer compo-
nents;
determining for each computing component associated
with the identification of the error, whether to alter error
logging activities for the computing component; and

responsive to determining to alter error logging activities
for the computing component, altering error logging
activities for the computing component.

2. The method of claim 1 further comprising:

identifying from the repository, an error correction module

associated with the error; and

executing the error correction module associated with the

error.
3. The method of claim 1 wherein:
determining for each computing component associated
with the error, whether to alter error logging activities
for the computing component further comprises:

determining a current error logging level for the computing
component;
determining the preferred error logging level for the com-
puting component upon an occurrence of the error; and

altering error logging activities for the computing compo-
nent further comprises setting the current error logging
level for the computing component to the preferred error
logging level for the computing component upon an
occurrence of the error.

4. The method of claim 3 wherein:

the repository specifies the preferred error logging level for

the each computing component associated with an iden-
tification of the error; and

determining the preferred error logging level for the com-

puting component upon an occurrence of the error
includes retrieving the preferred error logging level from
the repository.

5. The method of claim 1 further comprising:

receiving historical error resolution data, wherein the his-

torical error resolution data includes information
describing how previously encountered errors have been
previously resolved;

identifying in dependence upon the historical error resolu-

tion data, a plurality of computing components associ-
ated with each error contained in the historical error
resolution data; and

associating in a repository, an identification of each of the

plurality of computing components associated with each
error and an identification of the error.

6. The method of claim 5 wherein the historical error reso-
lution data is a structured document.

7. An apparatus comprising a computer processor a com-
puter memory operatively coupled to the computer processor,
the computer memory having disposed within it computer
program instructions that, when executed by the computer
processor, cause the apparatus to carry out the steps of:

receiving an identification of an error;

examining a repository to identify a plurality of computing

components associated with the identification of the
error, wherein the repository comprises an entry includ-
ing the identification of the error, an identification of
computer components associated with the error, and a
preferred error logging level for the computer compo-
nents;

determining for each computing component associated

with the identification of the error, whether to alter error
logging activities for the computing component; and

US 9,367,380 B2

13

responsive to determining to alter error logging activities
for the computing component, altering error logging
activities for the computing component.

8. The apparatus of claim 7 further comprising computer
program instructions that, when executed by the computer
processor, cause the apparatus to carry out the steps of:

identifying from the repository, an error correction module

associated with the error; and

executing the error correction module associated with the

error.
9. The apparatus of claim 7 wherein:
determining for each computing component associated
with the error, whether to alter error logging activities
for the computing component further comprises:

determining a current error logging level for the computing
component;
determining the preferred error logging level for the com-
puting component upon an occurrence of the error; and

altering error logging activities for the computing compo-
nent further comprises setting the current error logging
level for the computing component to the preferred error
logging level for the computing component upon an
occurrence of the error.

10. The apparatus of claim 9 wherein:

the repository specifies the preferred error logging level for

the each computing component associated with an iden-
tification of the error; and

determining the preferred error logging level for the com-

puting component upon an occurrence of the error
includes retrieving the preferred error logging level from
the repository.

11. The apparatus of claim 7 further comprising computer
program instructions that, when executed by the computer
processor, cause the apparatus to carry out the steps of:

receiving historical error resolution data, wherein the his-

torical error resolution data includes information
describing how previously encountered errors have been
previously resolved;

identifying in dependence upon the historical error resolu-

tion data, a plurality of computing components associ-
ated with each error contained in the historical error
resolution data; and

associating in a repository, an identification of each of the

plurality of computing components associated with each
error and an identification of the error.

12. The apparatus of claim 11 wherein the historical error
resolution data is a structured document.

13. A computer program product including a non-transi-
tory computer readable medium, the computer program prod-

15

20

25

30

35

40

45

uct comprising computer program instructions that, when 50

executed, cause a computer to carry out the steps of:
by computer program instruction on a computing device,
receiving an identification of an error;
examining a repository to identify a plurality of computing
components associated with the identification of the
error, wherein the repository comprises an entry includ-

55

14

ing the identification of the error, an identification of
computer components associated with the error, and a
preferred error logging level for the computer compo-
nents;

determining for each computing component associated
with the identification of the error, whether to alter error
logging activities for the computing component; and

responsive to determining to alter error logging activities
for the computing component, altering error logging
activities for the computing component.

14. The computer program product of claim 13 further

comprising computer program instructions that, when
executed, cause the computer to carry out the steps of:

identifying from the repository, an error correction module
associated with the error; and

executing the error correction module associated with the
error.

15. The computer program product of claim 13 wherein:

determining for each computing component associated
with the error, whether to alter error logging activities
for the computing component further comprises:

determining a current error logging level for the computing
component;

determining the preferred error logging level for the com-
puting component upon an occurrence of the error; and

altering error logging activities for the computing compo-
nent further comprises setting the current error logging
level for the computing component to the preferred error
logging level for the computing component upon an
occurrence of the error.

16. The computer program product of claim 15 wherein:

the repository specifies the preferred error logging level for
the each computing component associated with an iden-
tification of the error; and

determining the preferred error logging level for the com-
puting component upon an occurrence of the error
includes retrieving the preferred error logging level from
the repository.

17. The computer program product of claim 13 further

comprising computer program instructions that, when
executed, cause the computer to carry out the steps of:

receiving historical error resolution data, wherein the his-
torical error resolution data includes information
describing how previously encountered errors have been
previously resolved;

identifying in dependence upon the historical error resolu-
tion data, a plurality of computing components associ-
ated with each error contained in the historical error
resolution data; and

associating in a repository, an identification of each of the
plurality of computing components associated with each
error and an identification of the error.

18. The computer program product of claim 17 wherein the

historical error resolution data is a structured document.

#* #* #* #* #*

